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Abstract This paper analyzes continuous single facility location problems where
the demand is randomly defined by a given probability distribution. For these types of
problems that deal with the minimization of average distances, we obtain geometrical
characterizations of the entire set of optimal solutions. For the important case of total
polyhedrality on the plane we derive efficient algorithms with polynomially bounded
complexity. We also develop a discretization scheme that provides ε-approximate
solutions of the original problem by solving simpler location problems with points as
demand facilities.
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1 Introduction

Classical single facility location problems consider a finite set of points in a real normed
space X and the goal is to minimize some function depending on the distances to those
points (existing facilities or demand points). In the last years the assumption that
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facilities are represented by isolated points has been questioned by different authors
and the natural extension of considering sets rather than points has attracted the
attention of researchers, [3–11,27,34].

In the literature, we can find two different alternatives to deal with problems where
the demand is modelled by sets. The first one measures the distances to the clos-
est points in the sets, i.e., the goal is not to serve all points of the set but just to
reach the set, see [3–5,27]. The second one takes the average behavior into account,
so that any point in the demand facility is visited according to a given probabil-
ity distribution. This approach, that induces the minimization of expected distances
(see [6–11,23,34]), will be the goal of this paper. The reader may note that average-dis-
tance location problems are not simple generalizations of standard location problems
with points as demand facilities. Indeed, the mathematical tools used to analyze these
problems are different because the natural distance induced by the norm in X can
no longer be used and measure theory plays an important role in average-distance
problems.

From an application point of view, point facilities are simplifications of the more
realistic dimensional-demand facilities where the demand occurs according to a given
probability distribution. Models with expected distances are particularly suitable for
real-world situations where a server must cover random incidents (demand) whose
exact location is not known in advance. Thus, in general our model can be seen as a
tool to find the best response region against any random incident since we determine
the best region of estimators minimizing the expected distance to any occurrence of
a random variable. This could be the case of the stationing of rescue helicopters as
in the real-world situation described in Ehrgott [15], the location of planes used to
extinguish fires in reserves or natural parks as well as the case of stationing helicop-
ters used to transport organs to be transplanted. Another application is the problem
of locating a read/write head of a computer hard-disk to easily access the stored data,
analyzed in Vickson et al. [35] and Puerto and Rodríguez-Chía [30]. Since the position
of any reading or writing operation is unknown in advance, it can be represented by a
random variable with a specific probability distribution. Moreover, read/write heads
only move in a fixed number of directions usually radial and angular (Distances with
a finite number of moving direction on finite dimension spaces are called polyhedral).
Therefore this case fits to an average location problem with a distance modeled by
two moving directions on the geometrical body that represents the computer hard disk
(usually a disk or a cylinder).

On the other hand, from a methodological point of view, characterizing the entire
set of optimal solutions of different location problems is a subject that has attracted the
attention of researchers for many years. Problems on networks have been investigated
since the seminal paper by Hakimi [18] and in this framework the concept of finite
dominating set (FDS) has proven to be essential (see [20]). In continuous location
problems the tools that play the most important role are the linearity domains of the
objective functions. This idea was first introduced by Durier and Michelot [13], under
the name of Elementary Convex Set, characterizing the set of optimal solutions of the
Weber problem with a finite set of demand points in R

n (see [12] for characterizations
in a general real normed space and [29] for the convex ordered median location prob-
lem). Later, Nickel et al. [27] characterized the complete set of optimal solutions of a
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location problem with respect to sets using an infimal distance approach. Neverthe-
less, finding similar results for location problems using expected distances is still an
open question.

Following this line of research, this paper provides a geometrical characterization of
the entire solution set for a single facility location model with sets as demand facilities
using average distances. First, we study a basic model that extends to this framework
the well-known Fermat-Weber problem. In this case, we obtain an interesting geomet-
rical characterization of its optimal solution set in terms of normal cones. Then, we
concentrate on a more general model that includes as particular cases, among others,
most of the standard single facility location problems, namely the Fermat-Weber, the
minimax or the centdian problems. Unfortunately, for this model, it is not possible
to obtain the above intuitive geometrical description. It is worth noting that previous
references [6,7,9–11,23,34], dealing with expected distances, consider models that
can be obtained as particular cases of the one studied in this paper. However, none of
them analyzes the structure of the optimal solution set because they concentrate on the
development of algorithms. In addition, we obtain a discretization result that provides
ε-approximate solutions of these problems by solving location problems with points
as demand facilities.

The paper is organized as follows. Section 2 contains a collection of definitions
and results that will be necessary throughout the paper. Section 3 presents the basic
model and some existence and uniqueness results. Section 4 obtains a geometrical
characterization of the entire optimal solution set for this model. Section 5 introduces
an extended model and describes geometrically its entire set of optimal solutions. In
Sect. 6, we provide an efficient algorithm to characterize the entire optimal solution set
for the case of total polyhedrality on the plane. In Sect. 7, we develop a discretization
result that provides ε-approximate solutions for these models. The paper ends with
some concluding remarks.

2 Basic tools and definitions

Throughout this paper we will consider that X is a real separable Banach space and
X∗ its corresponding topological dual space. The pairing between X and X∗ will be
indicated by 〈·, ·〉. For the ease of understanding, the reader may replace the space X
by R

n , in this case the topological dual X∗ can be identified with X and the pairing
is the usual scalar product. Moreover, for the sake of completeness, we restate the
definitions of some concepts which are needed in the paper, the reader is referred to
[19] for further details.

1. Let B ⊂ X be a closed, bounded, convex and symmetric set with respect to the
origin which contains the origin in its interior (usually called balanced set, [21]).
The norm defined by the unit ball B is

γ : X → R, γ (x) := inf{ r > 0 : x ∈ r B }.

2. The dual norm γ o of γ is defined as the norm of unit ball Bo where Bo := { p ∈
X∗ : 〈p, x〉 ≤ 1, ∀ x ∈ B}.
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3. The normal cone to Bo at p ∈ X∗ is the set NBo(p) := {x ∈ X : 〈x, q − p〉 ≤
0, ∀ q ∈ Bo}.

4. Let f : X → R ∪ {+∞} be a convex function. A vector p ∈ X∗ is said to be a
subgradient of f at a point x ∈ X if

f (y) ≥ f (x) + 〈p, y − x〉 for each y ∈ X.

The set of all subgradients of f at x is called the subdifferential of f at x, ∂ f (x).
5. For a closed, convex set A ⊂ X , let

IA(x) =
{

0 if x ∈ A
+∞ otherwise.

6. Let f be a function from X to R ∪ {+∞} not identically equal to +∞ and min-
orized by some affine function. The conjugate f ∗ of f is the function defined
by

f ∗(p) = sup{〈p, x〉 − f (x) : x ∈ dom f } for any p ∈ X∗,

where dom f stands for the effective domain of the function f .
7. A function g : X −→ R is closed if g = cl g, defined as

cl g(x) =
{

lim
x ′→x

inf g(x ′) if lim
x ′→x

inf g(x ′) > −∞
−∞ otherwise.

After these definitions we recall the following well-known results.

Theorem 2.1

1. (See [31]) Let γ (·) be a norm and Bo the unit ball of its corresponding dual norm,
then
(a) ∂ IBo(x) = NBo(x) ∀x ∈ Bo.

(b) ∂γ (x) =
{

Bo if x = 0
{p ∈ Bo : 〈p, x〉 = γ (x)} if x �= 0.

(c) γ ∗(p) = IBo(p) for any p ∈ X∗.
2. (See [1]) For a closed and proper convex function:

p ∈ ∂ f (x), x ∈ X, p ∈ X∗ if and only if x ∈ ∂ f ∗(p).

Finally, the last result of this section is an adaptation to our framework of a more
general result that appears in [22, theorems 1,2 and 3 in Section 2].

Theorem 2.2 Let μ be a positive measure σ -finite relative to the Borel structure on
X and let T ⊆ X be a Borel subset with μ(T ) > 0. If ϕt (x) := γt (x − t) with γt (·) a
continuous norm in (X, γ ) for any t ∈ T , the following assertions hold:
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1. The function φ(x) := ∫
T ϕt (x)μ(dt) is continuous and convex on X, and the

functions t −→ ϕt (x) are summable for all x, hence φ(x) is not identically equal
to +∞.

2. Let F : X −→ L1(X, R) such that (F(x))(t) = ϕt (x)x ∈ X, t ∈ T . Then,

∂φ(x) =
∫
T

∂ϕt (x)μ(dt) =
∫
T

∂ F(x)μ(dt).

3. For any xo ∈ X, ∂φ(xo) consists of all the functionals x ′∈X∗ that can be repre-
sented by 〈x, x ′〉 = ∫

T (Ax)(t)μ(dt) where A ∈ ∂ F(xo).

3 The basic model. Existence and uniqueness results

In this section, we introduce a single facility location problem with expected distances
whose structure extends in a natural way the well-known Fermat-Weber problem (see
[24]). In order to define this problem, we consider a positive measure μ, σ -finite rela-
tive to the Borel structure on X , and T ⊆ X a Borel subset with μ(T )>0. The location
problem that we deal with is

inf
x∈X

φ(x) :=
∫
T

ϕt (x) μ(dt), (Pφ(T ))

where ϕt (x) := γt (x − t) and γt (·) is a continuous norm for each t ∈ T . Its optimal
solution set is denoted by Mφ(T ).

We note in passing that in the case where μ is concentrated on a finite set of points,
Pφ(T ) reduces to the objective function of the classical Fermat-Weber problem. The
interested reader can find several references in the literature dealing with particular
cases of this problem, as for instance [6,7,9–11,23].

In the following, we study existence and uniqueness results for Problem Pφ(T ). To
do that, we recall that a function g : X −→ R is lower-semicontinuous (lsc) if the
sets {x : g(x) ≤ α} are closed for all α ∈ R.

Theorem 3.1 (See [16, Theorem 3]) The problem Pφ(T ) has optimal solutions pro-
vided that any of the following conditions holds:

1. X is finite dimensional and ϕt are lsc in the t argument.
2. X is reflexive and ϕt are sequentially lsc in the t argument for the weak topology.
3. X is the dual space to a separable space and ϕt are sequentially lsc in the t

argument for the weak topology.
4. X is a dual space, ϕt are lsc in the t argument for the weak∗ topology and T is

μ-separable.

The above result gives sufficient conditions that ensure existence of optimal solutions
of (Pφ(T )). In the following, we will assume without loss of generality that our prob-
lems fall into this category; although, in general, there may exist problems of this type
without an optimal solution. Examples are shown in Papini [28].
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About the uniqueness of this problem, we must note that even if the norms γt are
strictly convex the function γt (· − t) is not. Nevertheless, we can quote the following
result given in Garkavi and Smatkov [16, Theorem 4].

Theorem 3.2 Assume that μ(T ) < +∞ and γt (·) are strictly convex norms for any
t ∈ T . Problem Pφ(T ) has no more than one optimal solution if and only if T does not
contain two nonintersecting subsets T1 and T2 such that μ(T1) = μ(T2) = μ(T )/2,
T1 and T2 enclosed in nonintersecting rays r1 and r2, respectively, and lying in the
same straight line.

For the general case where finiteness of μ(T ) is not required, we can prove the
following.

Theorem 3.3 Let dim(X) ≥ 2. If γt are strictly convex norms for any t ∈ T and
μ is absolutely continuous with respect to any measure that assigns null measure to
any subspace of dimension less than or equal to 1 then Problem Pφ(T ) has a unique
optimal solution.

Proof It is sufficient to prove that φ is a strictly convex function. Let x �= y and
Z = T \Zc where Zc ⊆ T is the set defined by the intersection of the line through x
and y with T . Since μ assigns null measure to lines, μ(Zc) = 0. For 0 < ν < 1, we
have

φ (νx + (1 − ν)y) =
∫
T

γt (νx + (1 − ν)y − t) μ(dt)

(because μ(Zc) = 0) =
∫
Z

γt (ν(x − t) + (1 − ν)(y − t)) μ(dt)

(since γt are strict) <

∫
Z

[
νγt (x − t) + (1 − ν)γt (y − t)

]
μ(dt)

= νφ(x) + (1 − ν)φ(y).

Therefore, φ is strictly convex and then Problem Pφ(T ) has a unique optimal
solution. ��

Note that in finite dimensional spaces the above result is true for any measure abso-
lutely continuous with respect to the Lebesgue measure and in general normed spaces,
for any measure absolutely continuous with respect to any Hausdorff measure with
d > 1 (coefficient defining this measure).

Now, we prove some results concerning the structure of Mφ(T ).

Proposition 3.1 Mφ(T ) is a closed, convex set. In addition, if T is a bounded set with
μ(T ) < +∞ then φ has bounded lower level sets.

Proof Mφ(T ) is closed and convex as lower-level set of a continuous convex function,
see Theorem 2.2.
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In order to prove the boundedness of the lower level sets, we obtain the following
inequality

φ(x) ≤
∫
T

(γt (x) + γt (t)) μ(dt) ≤
(

sup
u∈T

γu(x)

)
μ(T ) +

∫
T

γt (t)μ(dt).

Without loss of generality, we can assume that μ is not a degenerate measure at the
point 0, because in this case the lower level sets of φ(·) would coincide with the ones
of γ0(·) and the result follows.

Let R(x) := μ(T ) supu∈T γu(x)+ ∫
T γt (t)μ(dt). Since T is bounded and μ(T ) <

+∞ then R(x) < +∞ for any x ∈ X . Moreover,

R(x) ≥ φ(x) ≥
(

inf
t∈T

γt (x)

)
μ(T ) −

∫
T

γt (t)μ(dt).

Now, since μ is not a degerenate measure at the point 0,
∫

T γt (t)μ(dt) �= 0, thus

R(x) >

(
inf
t∈T

γt (x)

)
μ(T ) −

∫
T

γt (t)μ(dt).

Therefore, the lower level set of the function φ at the value φ(x), satisfies

L≤(φ, φ(x)) ⊂
⋃
s∈T

⎧⎨
⎩y : γs(y) ≤ 1

μ(T )
(R(x) +

∫
T

γt (t)μ(dt))

⎫⎬
⎭

which is a bounded set. ��
The next result is the characterization of a dominant set for Problem Pφ(T ) (recall

that a set is dominant for a problem if it always contains at least one optimal solution of
this problem). It extends the well-known convex hull property of Wendell–Hurter [36]
which states that the convex hull of the demand points always contains at least one
optimal solution if X = R

2 or if X is an inner product space when dim(X) > 2.

Theorem 3.4 Let co(T ) be the convex hull of T and ϕt (x) = γ (x−t)∀t ∈ T . The clo-
sure of co(T ) contains at least an optimal solution of Problem Pφ(T ) if dim(X) = 2
or γ is a norm derived from an inner product when dim(X) ≥ 3.

Proof Let cl(co(T )) denote the closure of co(T ) and let x∗ �∈ cl(co(T )) be an optimal
solution of Pφ(T ). Then if γ is derived from an inner product space the orthogonal
projection y∗ of x∗ onto the hyperplane that strictly separates cl(co(T )) from x∗ sat-
isfies γ (y∗ − t) < γ (x∗ − t) for any t ∈ T . Then integrating over T the result follows
by contradiction.

For the case of R
2, let Rt (x∗) = {x : γ (x − t) ≤ γ (x∗ − t)}. If cl(co(T )) ∩⋂

t∈T Rt (x∗) = ∅, since Rt (x∗) are bounded sets for any t ∈ T , these sets have no

123



380 J. Puerto, A. M. Rodríguez-Chía

recession directions and then applying Helly’s Theorem (see [31, Corollary 21.3.2]),
we have that there exist t1, t2, t3 ∈ T such that cl(co(T ))∩⋂3

i=1 Rti (x∗) = ∅. Hence,
we obtain that co(t1, t2, t3) ∩ ⋂3

i=1 Rti (x∗) = ∅. This contradicts Corollary 1 in
Wendell and Hurter [36], that ensures that for a given set {a1, . . . , aM } ⊆ R

2, and for
any x ∈ R

2 there exists x̂ ∈ co({a1, . . . , aM }) such that γ (x̂ − ai ) ≤ γ (x − ai ) for all
i = 1, . . . , M . Therefore, we can take x̂ ∈ cl(co(T )) ∩ ⋂

t∈T Rt (x∗) and this point
satisfies

∫
T γ (x̂ − t)μ(dt) ≤ ∫

T γ (x∗ − t)μ(dt). ��
The result is not true in general as can be seen in the following example.

Example 3.1 Let T be the set containing the n elements of the natural basis in R
n

equipped with a ‖ · ‖p norm, for p ∈ (1,∞). Let us consider a uniform discrete
probability measure μ with support on T . Then, it is straightforward that the (unique)
solution to Pφ(T ) with γt = ‖ · ‖p, ∀t ∈ T , is the point with all components equal
to α = 1

1+(n−1)1/(p−1) , which is not in general in the convex hull of T (for example, if

p = n = 3, then α is around 0.414, larger than 1
3 which would be needed for (α, α, α)

belonging to conv(T )).

It is worth noting that this section extends, to the more general framework where
(X, γ ) is any separable Banach space, the corresponding results proved in [9] for
2-dimensional spaces and in [13] for finite sets of points in R

n .

4 Optimality conditions

The goal of this section is to geometrically characterize Mφ(T ), the entire set of optimal
solutions of Pφ(T ). In the following we assume that the hypotheses of Theorem 2.2 are
fulfilled. In addition, we assume, without loss of generality, that μ(T ) �= 0 (otherwise
any x ∈ X is an optimal solution and the objective value is 0). The main result in this
section is Theorem 4.1 that gives a geometrical characterization of the set of optimal
solutions of Pφ(T ). To obtain that result we need the following technical lemma.

Lemma 4.1

1. If Mφ(T ) �= ∅, there exists at least one μ-measurable function q ∈ L1(X, X∗)
and a Borel set T ′ ⊆ T with μ(T \T ′) = 0 such that

∫
T ′ q(t)μ(dt) = 0 and

Mφ(T ) = ⋂
t∈T ′ ∂ϕ∗

t (q(t)).
2. If there exists a μ-measurable function q ∈ L1(X, X∗) and a Borel set T ′ ⊆ T

with μ(T \T ′) = 0 such that
∫

T ′ q(t)μ(dt) = 0 and
⋂

t∈T ′ ∂ϕ∗
t (q(t)) �= ∅ then

Mφ(T ) = ⋂
t∈T ′ ∂ϕ∗

t (q(t)).

Proof

1) Let xo ∈ Mφ(T ), then 0 ∈ ∂φ(xo). By Theorem 2.2, we have that there exists
q ∈ L1(X, X∗) such that

0 =
∫
T ′

q(t)μ(dt) ∈
∫
T ′

∂ϕt (xo)μ(dt) =
∫
T

∂ϕt (xo)μ(dt) = ∂φ(xo),
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and q(t) ∈ ∂ϕt (xo) ∀t ∈ T ′. Hence, by Theorem 2.1, xo ∈ ∂ϕ∗
t (q(t)) ∀t ∈ T ′.

Moreover, using the same arguments, for any x ∈ ⋂
t∈T ′ ∂ϕ∗

t (q(t)), we have that
q(t) ∈ ∂ϕt (x) ∀t ∈ T ′ and thus also 0 ∈ ∂φ(x). Therefore, if Mφ(T ) �= ∅ then
Mφ(T ) = ⋂

t∈T ′ ∂ϕ∗
t (q(t)).

2) Let q ∈ L1(X, X∗) be a μ-measurable function, T ′ ⊆ T be a Borel set with
μ(T \T ′) = 0 such that

∫
T ′ q(t)μ(dt) = 0 and xo ∈ ⋂

t∈T ′ ∂ϕ∗
t (q(t)). By

Theorem 2.1, we have that q(t) ∈ ∂ϕt (xo) ∀t ∈ T ′. In addition, by Theorem 2.2,

0 =
∫
T ′

q(t)μ(dt) ∈
∫
T ′

∂ϕt (xo)μ(dt) =
∫
T

∂ϕt (xo)μ(dt) = ∂φ(xo),

and thus 0 ∈ ∂φ(xo), which in turn is equivalent to xo ∈ Mφ(T ). Analogously, for
any x ∈ Mφ(T ), by reversing arguments, we obtain that x ∈ ⋂

t∈T ′ ∂ϕ∗
t (q(t)),

and the result follows. ��
In order to give the geometrical description of the solution set of problem Pφ(T ),

we use a family of sets that were introduced in Location Analysis by Durier and
Michelot [13] and that we adapt to our different framework.

Definition 4.1 Let q ∈ L1(X, X∗) be a μ-measurable function such that q(t) ∈ Bo
t

for each t ∈ T ′ and let T ′ ⊂ T be a Borel set such that μ(T \T ′) = 0. Let Cq(T ′) :=⋂
t∈T ′

(t + Nt (q(t))), where Nt (q(t)) stands for the normal cone to Bo
t at the point q(t).

The sets Cq(T ′), when nonempty, are called elementary convex sets.

Theorem 4.1

(1) If Mφ(T ) �= ∅ then it coincides with an elementary convex set Cq(T ′), associ-
ated with a measurable function q ∈ L1(X, X∗) and a Borel set T ′ ⊆ T with
μ(T \T ′) = 0, such that

∫
T ′ q(t)μ(dt) = 0.

(2) Conversely, let Cq(T ′) be an elementary convex set associated with a Borel set
T ′ ⊆ T with μ(T \T ′) = 0 and a function q ∈ L1(X, X∗). If

∫
T ′ q(t)μ(dt) = 0,

then Cq(T ′) = Mφ(T ).

Proof

(1) Let ϕt (x) = γt (x − t). From point (1) of Lemma 4.1 there exists a function
q ∈ L1(X, X∗) and a Borel set T ′ such that

∫
T ′ q(t)μ(dt) = 0, μ(T \T ′) = 0

and Mφ(T ) = ⋂
t∈T ′ ∂ϕ∗

t (q(t)).
In addition, ϕ∗

t (q(t)), the conjugate of ϕt at q(t) for t ∈ T ′, is given by

ϕ∗
t (q(t)) = sup

x∈X
{〈q(t), x〉 − γt (x − t)}.

By the change of variable y = x − t , we obtain ϕ∗
t (q(t)) = 〈q(t), t〉+ γ ∗

t (q(t))
and by Theorem 2.1, γ ∗

t (q(t)) = IBo
t
(q(t)). Thus, since ∂ϕ∗

t (q(t)) = t +
∂γ ∗

t (q(t)) we also obtain that ∂ϕ∗
t (q(t)) = t + Nt (q(t)). Hence, we conclude

that
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⋂
t∈T ′

∂ϕ∗
t (q(t)) =

⋂
t∈T ′

(t + Nt (q(t))) = Cq(T ′),

and the result follows.
(2) The function q and the set T ′ satisfy the assumptions of point (2) of Lemma 4.1,

i.e,
∫

T ′ q(t)μ(dt) = 0 and
⋂

t∈T ′ ∂ϕ∗
t (q(t)) �= ∅. Then Mφ(T ) = Cq(T ′). ��

To illustrate the result we present the following examples.

Example 4.1 (i) Let X be the real line and μ be given by the density f (t) = e−t

for t ≥ 0. The location problem is:

min
x∈R

∫
R+

|x − t |e−t dt.

Consider q(t) =
{

1 if t ≤ log 2
−1 if t > log 2

. It is straightforward that
∫
R+ q(t)e−t

dt = 0. Moreover, t + NBo(q(t)) =
{

t + R+ if t ≤ log 2
t − R+ if t > log 2

; and thus⋂
t∈R+(t +NBo(q(t)) = {log 2}. Applying Theorem 4.1, we get that the unique

optimal solution is x∗ = log 2.
(ii) Let X = R

2 with the rectilinear ‖ · ‖1-norm. Consider a measure μ given by
the density f (t) = 1/2IC1(t) + 1/2IC2(t), where t = (t1, t2) ∈ R

2, C1 =
co{(1, 1), (2, 1), (1, 2), (2, 2)} and C2 = co{(−1,−1), (−2,−1), (−1,−2),

(−2,−2)} and for a set A, IA(t) = 1 if t ∈ A and 0 otherwise. The location
problem is:

min
x∈R2

∫

R2

‖x − t‖1 f (t) dt.

Consider q(t) =
⎧⎨
⎩

(−1,−1) if t ∈ C1
(1, 1) if t ∈ C2
(0, 0) if t �∈ C1 ∪ C2

. It is straightforward that

∫
R2 q(t) f (t) dt = (0, 0). Moreover, t + NBo(q(t)) =

{
t − R

2+ if t ∈ C1

t + R
2+ if t ∈ C2

;

and thus
⋂

t∈C1∪C2
(t + NBo(q(t)) = co{(−1,−1), (−1, 1), (1,−1),

(1, 1)} := C∗. Applying Theorem 4.1, we get that the complete set of optimal
solutions is C∗.

(iii) Let X = 
1 be the space that consists of all sequences of scalars (ξi )
∞
i=0 :=

{ξ0, ξ1, ξ2, . . .} for which

‖ξ‖1 :=
∞∑

i=0

|ξi | < +∞.
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Note that in this case X∗ = 
0, see [25], the space of bounded sequences and
‖ξ∗‖∞ = maxi=0,1,2,... |ξ∗

i | for any ξ∗ ∈ X∗. Let μ be a probability mea-
sure given by the truncated exponential distribution in (1,+∞) of average 1

a
(a > 0), i.e. its corresponding density function is

f (t) =
{

ae−at

e−a , if t > 1
0, otherwise.

For T =
{(

1
tk

)∞
k=0

: t ∈ (1,+∞)
}

, the location problem is

min
x∈
1

+∞∫
1

∥∥∥∥x −
(

1

tk

)∞

k=0

∥∥∥∥
1

f (t) dt. (1)

Consider q(t) =
{

(1)∞k=0, if 1 ≤ t ≤ 1 + 1
a log 2

(−1)∞k=0, if t > 1 + 1
a log 2.

It is straightforward that
∫ +∞

1 q(t) f (t) dt = (0)+∞
k=0. Moreover,

NBo(q(t)) =
{

([0,+∞))∞k=0 , if 1 < t ≤ 1 + 1
a log 2

((−∞, 0])∞k=0 , if t ≥ 1 + 1
a log 2

and thus
⋂

t∈(1,+∞)

((
1
tk

)∞
k=0

+ NBo(q(t)
)

=
{(

1(
1+ 1

a log 2
)k

)+∞

k=0

}
:= C∗.

Applying Theorem 4.1, we get that the complete set of optimal solutions of
Problem (1) is C∗.

We can derive simpler optimality conditions in the particular case that X = R
n and

total polyhedrality, i.e. the norm γt = γ for any t ∈ T and γ is a polyhedral norm.
Assume that the extreme points of the dual norm γ o are vi , i = 1, . . . , g. Then we
can obtain the gradient ∇φ(x) at any point.

Proposition 4.1 If μ is absolutely continuous with respect to the Lebesgue measure,
then ∇φ(x) = ∑g

i=1 μ((x − NB0(vi )) ∩ T )vi .

Proof We know that convex functions in R
n only have a countable set of non-

differentiability points (see [31, Corollary 25.5.1]). Therefore, φ(x) is differentiable
and its derivative is given by:∇φ(x) = ∫

T ∇γ (x−t)μ(dt).By James’ Theorem, in any
reflexive space X = ⋃

u∈Bo NBo(u) (see [33]). Then, we have T = T ∩⋃g
i=1 NB0(vi ),

and μ(NB0(vi )) = μ(int (NB0(vi ))), i = 1, . . . , g, because μ is absolutely continu-
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ous with respect to the Lebesgue measure. Hence

∇φ(x) =
∫

T ∩⋃g
i=1 NB0 (vi )

∇γ (x − t) μ(dt) =
g∑

i=1

∫

(x−NB0 (vi ))∩T

∇γ (y)μ(dy)

=
g∑

i=1

viμ((x − NB0(vi )) ∩ T ).

��
The application of the above proposition allows us to rewrite the optimality condition:

x∗ is an optimal solution iff
∑g

i=1 viμ((x∗ − NB0(vi )) ∩ T ) = 0.

Remark 4.1 The extension of this condition to more general spaces seems to be a hard
task. The main problem is that in general Banach spaces continuous convex func-
tions may exist having nowhere a Gâteaux differential. A possible extension may be
obtained considering Asplund spaces (See [17]).

Remark 4.2 One can develop estimates on the size of the set Mφ(T ). In order to do
that we need a measure of the size, since many different norms {γt }t∈T are defined
on X . Assuming that

∫
T γt (x)μ(dt) < ∞, ∀x ∈ X , we define the following seminorm

‖|x‖| = ∫
T γt (x)μ(dt). Then, if we denote by φ∗ the optimal value of problem Pφ(T )

and x∗ and y∗ belong to Mφ(T ) then φ∗ = ∫
T γt (x∗ − t)μ(dt) ≥ ‖|x∗ − y∗‖| −∫

T γt (y∗ − t)μ(dt). Hence, ‖|x∗ − y∗‖| ≤ 2φ∗.

The following example proves that this bound is sharp.

Example 4.2 Consider X = R, T = {0, 1} and the measure

μ(−∞, t] =

⎧⎪⎨
⎪⎩

0 if t < 0

1/2 if 0 ≤ t < 1

1 otherwise.

The optimal solution set is [0, 1] with value φ∗ = 1/2.

5 The extended model

The model analyzed so far (in previous sections) is the natural reformulation of the
single facility Fermat-Weber problem with respect to expected distances. In recent
years, characterizing optimal solution sets of wider families of location problems has
been an issue attracting the interest of location theory researchers. Attempts to deal
with more general models than the Weber problem, have been considered in standard
location analysis with points as demand facilities (see e.g. [12]) as well as with sets as
demand facilities (see [27]). In this section, we extend the model in Sect. 4 to deal with
more general problems involving different objective functions over average distances
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and simultaneously, several probability distributions. In addition, this approach also
extends the results in [12] and [27] to location problems with expected distances. The
structure of these problems, being more complex than the model considered in previ-
ous sections, does not allow us to obtain the simple and elegant geometrical description
presented there for the basic model. In spite of that, we provide a different geometrical
characterization of the solution set for the extended model using alternative tools.

In order to give the formulation of this model, we consider a globalizing function
�(·) which is a monotone norm on R

M (Recall that a norm � is said to be monotone
on R

M if �(u) ≤ �(v) for every u, v verifying |ui | ≤ |vi | for each i = 1, . . . , M , see
[2]). In addition, let μi be a positive measure σ -finite relative to the Borel structure
on X , and T ⊆ X a Borel subset with μi (T ) > 0 for i = 1, . . . , M ; d̄i (x) represents
the average-distance from x to T weighted with μi , i.e. d̄i (x) := ∫

T ϕt (x)μi (dt),
where ϕt (x) = γt (x − t) and γt (·) is a continuous norm for each t ∈ T . Hence, the
formulation of the extended model is:

inf
x∈X

F(x) := �(D(x)), (P�(ϒ))

where D(x) = (d̄1(x), . . . , d̄M (x)) and ϒ = {μ1, . . . , μM }. Its optimal solution set
is denoted by M�(ϒ).

It is worth noting that for particular choices of the monotone norm �, we get well-
known problems in Location Analysis such as the center, cent-dian, k-centrum, etc.
(See [26] for a description of these functions). In addition, the reader can see that
the function F = � ◦ D is convex on R

M provided that � is monotone (see [19,
Proposition IV.2.1.8]).

The existence and uniqueness results obtained for the basic model are still valid for
the extended model. Thus, in this section we concentrate on obtaining a geometrical
characterization of the set of optimal solutions M�(ϒ). In order to do that we first
characterize the subdifferential of F(x).

Lemma 5.1 Let x ∈ X be such that D(x) �= 0 ∈ R
M . Then, δ̂ ∈ ∂ F(x) iff there exist

pi ∈ ∂ d̄i (x) such that pi = ∫
T qi (t)μ(dt) with qi (t) ∈ ∂ϕt (x), for i = 1, . . . , M

and δ ∈ ∂�(y) for y = D(x) with δ ∈ R
M+ , such that δ̂ = ∑M

i=1 δi pi .

Proof By Theorem 2.2, we have that pi ∈∂ d̄i (x) if and only if there exist qi (t)∈∂ϕt (x)

almost everywhere in T , such that pi=
∫

T qi (t)μi (dt) and d̄i (x)=∫
T 〈qi (t), x−t〉μi (dt),

for i = 1, . . . , M . Moreover, since � is a norm, and y > 0, we have

∂�(y) =
{

δ ∈ R
M+ : �o(δ) = 1; �(y) =

M∑
i=1

δi yi

}
,

where �o denotes the dual norm of �. In addition, by [22, Theorem 2, Sect. 8], the
subdifferential of the composition of a nondecreasing convex function with several
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convex functions is given by

∂ F(x) = ∂�(D(x))

=
{

M∑
i=1

δi pi : (δ1, . . . , δM ) ∈ ∂�(D(x)), (p1, . . . , pM ) ∈ ∂ D(x)

}
,

and the result follows. ��
In the following we introduce the families of sets that will be used to obtain the

geometrical characterization of the optimal solution set M�(ϒ).

Definition 5.1 Given p = (p1, . . . , pM ) ∈ (X∗)M and I ⊆ {1, . . . , M}. Let

C I (p) :=
⋂
i∈I

∂ d̄∗
i (pi ),

where d̄∗
i is the conjugate function of d̄i (x), and for any δ = (δ1, . . . , δM ) ≥ 0 let

DI (δ) :=
{

x :
∑
i∈I

δi d̄i (x) = F(x)

}
.

It is useful to observe that C I (p) is nonvoid only for some choices of I and p.
The sets C I (p) are called generalized elementary convex sets (g.e.c.s.). The reader
may note the similarity with the concept of elementary convex set introduced in
Definition 4.1 which justifies its name. It is straightforward to see that the g.e.c.s.
are convex because they are defined by a finite intersection of convex sets (recall that
subdifferential sets are convex).

Definition 5.2 We call (I, δ, p) an optimizing triplet if

1. I �= ∅, I ⊆ {1, . . . , M},
2. δ = (δ1, . . . , δM ) with δi > 0 (i ∈ I ), and δi = 0 (i /∈ I ) satisfying �o(δ) = 1

and
3. p = (p1, . . . , pM ) such that pi ∈ ∂ d̄i (x) for i = 1, . . . , M and for some x ∈ X ,

with
∑M

i=1 δi pi = 0.

Note that there may be triplets (I, δ, p) not being optimizing. The rationale behind
the above definition is that a triplet is optimizing if it can be used to construct a zero
element in ∂ F(x) (following the description given in Lemma 5.1) to show optimality.

A different definition of optimizing triplet, based on infimal distances to sets, was
used by Nickel et al. [27] (there it was called “suitable”) for characterizing optimal
solution sets of location problems in a different framework, namely using sets and
inf-distances.

In order to give a complete characterization of M�(ϒ), we prove the following
theorem.
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Theorem 5.1
1. If M�(ϒ) �= ∅, then there exists an optimizing triplet (I, δ, p) such that

M�(ϒ) = C I (p) ∩ DI (δ).

2. M�(ϒ) = C I (p)∩ DI (δ), for any optimizing triplet (I, δ, p) such that C I (p)∩
DI (δ) �= ∅.

Proof Assume x0 ∈ M�(ϒ) which in turn is equivalent to 0 ∈ ∂ F(x0). Then, by
Lemma 5.1 applied to δ̂ = 0 ∈ X , we have that there exists an optimizing triplet
(Ix0 , δx0 , px0) which may depend on x0, satisfying 0 = ∑M

i=1 δi pi ∈ ∂ F(x0). Using
Theorems 2.1 and 2.2, and since � is a norm we have that x0 ∈ C Ix0

(px0)∩ DIx0
(δx0).

Moreover, any x ∈ C Ix0
(px0) ∩ DIx0

(δx0) also satisfies that 0 ∈ ∂ F(x). Therefore,

we have just proved that C Ix0
(px0) ∩ DIx0

(δx0) ⊆ M�(ϒ).

Hence, in order to complete the proof we have to prove that any x̄ ∈ M�(ϒ) also
satisfies that x̄ ∈ C Ix0

(px0) ∩ DIx0
(δx0).

Observe that, since x0 ∈ DIx0
(δx0), then

F(x0) =
M∑

i=1

δx0,i

∫
T

ϕt (x0)μi (dt). (2)

Moreover, since x0 ∈ C Ix0
(px0), we have that x0 ∈ ∂ d̄∗

i (px0,i ) for all i ∈ Ix0 , which

by Theorem 2.1 implies that px0,i ∈ ∂ d̄i (x0) for all i ∈ Ix0 . Next, we use Theorem 2.2
to ensure that there exist qi (t) ∈ ∂ϕt (x0) such that px0,i = ∫

T qi (t)μi (dt) ∀i ∈ I .
Thus, ϕt (x0) = 〈qi (t), x0 − t〉 and we can rewrite (2) in the following way

F(x0) =
M∑

i=1

δx0,i

∫
T

〈qi (t), x0 − t〉μi (dt) = −
M∑

i=1

δx0,i

∫
T

〈qi (t), t〉μi (dt). (3)

Observe that the last equality follows from the third property of the optimizing triplet,
i.e.

∑M
i=1 δx0,i px0,i = 0, and then

∑M
i=1 δx0,i

∫
T qi (t)μi (dt) = 0. Next, using again

this representation of 0, we get from (3) for any x ∈ X

F(x0) = −
M∑

i=1

δx0,i

∫
T

〈qi (t), t〉μi (dt) =
M∑

i=1

δx0,i

∫
T

〈qi (t), x − t〉μi (dt).

Now, since γ and � are norms, we have that

γt (y) = sup
x ′ ; γ o(x ′)=1

〈x ′, y〉 and F(x) = �(D(x)) = sup
δ :�o(δ)=1

〈δ, D(x)〉.

Hence, we obtain the following inequalities

F(x0) =
M∑

i=1

δx0,i

∫
T

〈qi (t), x − t〉μi (dt) ≤
M∑

i=1

δx0,i

∫
T

γt (x − t)μi (dt) ≤ F(x).
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The last inequalities are valid for any x ∈ X . Thus, taking x = x̄ and observing that
x̄ ∈ M�(ϒ), we have that F(x0) = F(x̄). This implies that γt (x̄ − t) = 〈qi (t), x̄ − t〉
almost everywhere in T . Hence, qi (t) ∈ ∂ϕt (x̄) almost everywhere in T and x̄ ∈
C Ix0

(px0) ∩ DIx0
(δx0). Thus, the choice of the triplet (Ix0 , δx0 , px0) does not depend

on x0. Therefore, we have proved that there exists an optimizing triplet (I, δ, p) such
that M�(ϒ) = C I (p) ∩ DI (δ).

Finally, by reversing the arguments one also proves the second assertion. ��

The characterization obtained in the above theorem is rather important from several
points of view. On the one hand, from a theoretical point of view in order to obtain
a complete description of the optimal solution set of Problem P�(ϒ), we only need
to find an optimizing triplet (I, δ, p) such that C I (p) ∩ DI (δ) �= ∅. On the other
hand, from an application point of view in the case of total polyhedrality, i.e., if the
demand sets and the unit balls of the norms are polygons, Theorem 5.1 is particularly
useful (see Sect. 6 for a complete description). These cases are important because, in
real-world applications, demand regions and unit balls of the norms are sometimes
approximated by polygons. This is for instance the way that current GPS units display
areas or regions. Finally, Theorem 5.1 also advances significantly the knowledge in
the field of location analysis. Up to date, there were known geometrical characteriza-
tions of location problems with points and sets (using infimal distances) as demand
facilities. However, the characterization of location problems with sets and expected
distances was an open problem and the above theorem closes this gap.

We illustrate the elements used in Theorem 5.1 with the following examples where
the elements of different optimizing triplets are shown in full detail.

Example 5.1 (i) Consider a location problem in R
2 with the squared Euclidean

norm ‖ · ‖2
2. Let T = R

2 and let � be the ‖ · ‖1-norm in R
2 and the measures

μi , i = 1, 2 are given, respectively, by the densities

f1(t1, t2) = 1

2π
exp

{
−1

2
(t2

1 + t2
2 )

}
∀(t1, t2) ∈ R

2

f2(t1, t2) =
⎧⎨
⎩

1

4
exp

{−1

4
t1t2

}
, if t1, t2 ≥ 0

0, otherwise

The extended problem to be solved is:

min
x∈R2

d̄1(x) + d̄2(x).

Set q1(t) = q1(t1, t2) = (1−t1, 1−t2) and q2(t) = q2(t1, t2) = (1−t1, 1−t2)
for all t ∈ T . Consider the triplet (I, δ, p) given by I = {1, 2}, δ = (1, 1) and
p = (p1, p2) with p1 = (1, 1) and p2 = (−1,−1). For x∗ = (1, 1) the above
triplet is an optimizing triplet since
1. �o(δ) = ‖δ‖∞ = 1.
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2. qi (t) ∈ ∂‖x∗−t‖2
2, a.e. for i =1, 2. Since,

∫
R2 q1(t) f1(t) dt =(1, 1) = p1

and
∫
R2 q2(t) f2(t) dt = (−1,−1) = p2, by Theorem 2.2, pi ∈ ∂ d̄i (x∗),

for i = 1, 2.
3. p1 + p2 = 0.
Applying Theorem 2.1 x∗ ∈ ∂ d̄∗

i (pi ) for i = 1, 2 and F(x∗) = ∑2
i=1 d̄i (x∗),

that is, x∗ ∈ C I (p) ∩ DI (δ). Moreover, since {qi (t)} = ∂ϕt (x∗), we have
that C I (p) = {x∗}. Hence, x∗ is the unique optimal solution of this location
problem.

(ii) Let X = 
1 (see Example 4.1 iii) and let f (·) be the density function of a trun-
cated exponential probability distribution in (1,+∞) of average 1

a (a > 0),
i.e.

f (x) =
⎧⎨
⎩

ae−ay

e−a
, if y > 1

0, otherwise.

Consider T1, T2 ⊂ X defined as T1 =
{(

1
yk

)∞
k=0

: y ∈ (1,+∞)
}
,

T2 =
{( 1

ky

)∞
k=0 : y ∈ (1,+∞)

}
and T = {T1, T2}.

Let μ1 and μ2 be two positive mesures defined over the Borel sets of X as

μ1(B) :=
∫

IB∩T1(t)μ1(dt) :=
∫

{
y :

(
1

yk

)∞
k=0

∈B

}
f (y) dy,

μ2(B) :=
∫

IB∩T2(t)μ2(dt) :=
∫

{
y :

(
1

k y

)∞
k=0

∈B
}

f (y) dy.

(Recall that for a given set A, IA(t) = 1 if t ∈ A and 0 otherwise).
Taking �(y) = ‖y‖1 for any y ∈ R

2 the extended location problem to be solved is

min
x∈
1

F(x) = �(D(x)) := d̄1(x) + d̄2(x),

where

d̄1(x) =
∫
T

‖x − t‖1μ1(dt) =
+∞∫
1

∥∥∥∥x −
(

1

yk

)∞

k=0

∥∥∥∥
1

f (y) dy,

d̄2(x) =
∫
T

‖x − t‖1μ2(dt) =
+∞∫
1

∥∥∥∥x −
(

1

ky

)∞

k=0

∥∥∥∥
1

f (y) dt.
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For

q1(t) =

⎧⎪⎨
⎪⎩ (

�y�︷ ︸︸ ︷
−1, . . . ,−1, 1, 1, . . .), if t = ( 1

yk )∞k=0 ∈ T1

0 otherwise

q2(t) =

⎧⎪⎨
⎪⎩ (

�y�︷ ︸︸ ︷
1, . . . , 1,−1,−1, . . .), if t = ( 1

ky )∞k=0 ∈ T2

0, otherwise,

and x∗ =
(

1
kk

)∞
k=0

, we have that:

1. p1 =
∫
T

q1(t)μ1(dt) =
∞∫

1

(

�y�︷ ︸︸ ︷
−1, . . . ,−1, 1, 1, . . .) f (y) dy

=
∞∑

k=1

k+1∫
k

(

k︷ ︸︸ ︷
−1, . . . ,−1, 1, 1, . . .) f (y) dy; and

p2 =
∫
T

q2(t)μ2(dt) =
∞∫

1

(

�y�︷ ︸︸ ︷
1, . . . , 1,−1,−1, . . .) f (y) dy

=
∞∑

k=1

k+1∫
k

(

k︷ ︸︸ ︷
1, . . . , 1,−1,−1, . . .) f (y) dy.

2. p1 + p2 = 0.

Taking I = {1, 2}, δ = (1, 1) and p = (p1, p2), (I, δ, p) is an optimizing triplet.

Indeed, we can see that q1(t) ∈ ∂

∥∥∥x∗ −
(

1
tk

)∞
k=0

∥∥∥
1

and q2(t) ∈ ∂

∥∥∥x∗ − ( 1
kt

)∞
k=0

∥∥∥
1
,

or equivalently, pi ∈ ∂ d̄i (x∗) for i = 1, 2. Therefore, x∗ ∈ ∂ d̄∗
i (pi ) for i = 1, 2

and F(x∗) = ∑2
i=1 d̄i (x∗), that is, x∗ ∈ C I (p) ∩ DI (δ). Moreover, since {q1(t)} =

∂

∥∥∥x∗ −
(

1
tk

)∞
k=0

∥∥∥
1

and {q2(t)} = ∂

∥∥∥x∗ − ( 1
kt

)∞
k=0

∥∥∥
1
, we have that C I (p) = {x∗}.

Hence, x∗ is the unique optimal solution of this location problem.

We conclude this section giving easier optimality conditions for the extended model
under additional hypotheses.

Proposition 5.1 Let X = R
n and ϕt (x) = γ (x − t), where γ is a polyhedral norm.

If � is differentiable everywhere except at the origin, then F is differentiable and its
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derivative equals:

∇F(x) =
M∑

i=1

∑
u∈Ext (Bo)

u
d�(D(x))

dxi
μi (T ∩ (x − NBo(u))),

where Ext (Bo) stands for the set of extreme points of Bo.

6 The polyhedral planar case

In this section we restrict ourselves to R
2 and total polyhedrality, that is, the norms

defined are polyhedral and the sets where the demand occurs are convex polygons.
This reduction allows us to describe the geometrical characterization given in previous
sections in an easier way. For a better understanding of this section we consider that
γt (· − t) = γ (· − t) for all t ∈ T where γ (·) is a polyhedral norm with unit ball B
having g extreme points. Recall that the fundamental directions of γ are those defined
by the vectors connecting the origin with the extreme points of B, [13].

By Theorem 5.1, in order to describe the entire set of solutions of these problems,
we only need to identify an optimizing triplet, (I, δ, p), such that, C I (p)∩ DI (δ) �= ∅.
Therefore, we first characterize the two families of sets C I (p) and DI (δ).

Lemma 6.1 Let γ be a polyhedral norm and let μ be an absolutely continuous mea-
sure with respect to the Lebesgue measure restricted to a planar convex polygon T .
There exists a finite subdivision of R

2 such that d̄(x, T ) has a common closed form
expression on each element of the subdivision. Moreover, this expression is linear or
quadratic in x.

Proof Since γ is polyhedral with unit ball B and X = R
2, the dual unit ball Bo is also

a polygon with g extreme points. Then, using the evaluation of γ through the dual ball
we have:

γ (x − t)= sup
u∈Bo

〈u, x − t〉= max
u∈Ext (Bo)

〈u, x − t〉=〈uk0 , x − t〉 ∀t ∈ x − NBo(uk0)

and some k0 ∈ {1, . . . , g}. Now, the evaluation of the expected distance is:

d̄(x, T ) =
∫
T

γ (x − t)μ(dt) =
g∑

j=1

∫
T ∩(x−NBo (u j ))

〈u j , x − t〉μ(dt).

Next, we observe that in the above integral x is fixed and thus the resulting expression
is either linear, whenever the integration domain does not depend on x , or quadratic
whenever the domain is a polyhedron that depends on x . ��

Clearly, the complexity for obtaining d̄(x, T ) for a given x and μ being the Legesgue
measure is O(kg), where k is the number of facets of T .

123



392 J. Puerto, A. M. Rodríguez-Chía

Fig. 1 Subdivision of R
2 generated by the norm γ

Remark 6.1 From the construction above, the subdivision mentioned in Lemma 6.1 is
generated by all the lines that are parallel to the fundamental directions of γ (·) through
each vertex of the set T . Let R := {R j } j∈J be such a subdivision (See Fig. 1).

The reader may note that if we are given a problem with M polyhedral demand sets,
{Ti }M

i=1, Ti having ki facets, the number of lines defining the subdivision mentioned in
Lemma 6.1 is O(Mgkmax), where kmax = maxi=1,...,M ki . Therefore, the cardinality
of J is O((Mgkmax)

2).

Example 6.1 Let T = co{(−2,−1), (2,−1), (2, 1), (−2, 1)} be a set and let γ be a
hexagonal norm with unit ball B defined by B =co{(1, 0), (0.5, 1), (−0.5, 1), (−1, 0),

(−0.5,−1), (0.5,−1)}. Let us assume that μ is a uniform probability density on T .
First, we obtain that Bo = co{(1, 0.5), (0, 1), (−1, 0.5), (−1,−0.5), (0,−1),

(1,−0.5)}. The subdivision, {R j } j∈J , generated by the fundamental directions can be
seen in Fig. 1. By Lemma 6.1, the expression of d̄(x, T ) has a common closed form
expression (either linear or quadratic) for all x in the same element of that subdivision.
In general, for each x ∈ R

2, the expression of the expected distance to T is given by

d̄(x, T ) =
∫
T

γ (x − t)μ(dt) = 1

μ(T )

∫
T

γ (x − t) dt.
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For the particular case of x ∈ R j with j ∈ J we can obtain a simpler expression. In
the following, we give some examples of the common analytical expression of d̄(x, T )

for x ∈ R j with j = 1, 2, 7 (See Fig. 1).

Case x ∈ R1: In this case, γ (x − t) = 〈(0,−1), (t1 − x1, t2 − x2)〉. Thus,

d̄(x, T ) = 1

8

∫
T

γ (x − t) dt

= 1

8

2∫
−2

1∫
−1

〈(0, 1), (x1 − t1, x2 − t2)〉 dt1 dt2 = x2.

Case x ∈ R2: In this case, γ (x − t) = 〈(1,−0.5), (t1 − x1, t2 − x2)〉.

d̄(x, T ) = 1

8

∫
T

γ (x − t) dt

= 1

8

2∫
−2

1∫
−1

〈(−1, 0.5), (x1 − t1, x2 − t2)〉 dt1 dt2 = −x1 + x2

2
.

Case x ∈ R7: In this case,

γ (x−t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

〈(1, 0.5), (x1 − t1, x2 − t2)〉 if t ∈ T and t1 ≤ t2 + 2x1 − x2

2
〈(0, 1), (x1 − t1, x2 − t2)〉 if t ∈ T and

t2 + 2x1 − x2

2
≤ t1 ≤ −t2 + 2x1 + x2

2
〈(−1, 0.5), (x1 − t1, x2 − t2)〉 if t ∈ T and t1 ≥ −t2+2x1+x2

2
.

Thus,

d̄(x, T ) = 1

8

∫
T

γ (x − t) dt = 1

8

(
2x2

1 + 1

2
x2

2 + 4x2 + 49

6

)
.

Note that for some elements of the subdivision R, namely R j , j = 1, . . . , 6, the
function d̄(x, T ) is linear in x .

Once we have characterized the subdivision R induced by the family of sets C I (p),
we study the one generated by the family DI (δ), that is, the subdivision generated by
the function F = � ◦ D on R

2. We assume that � is a polyhedral norm (in R
n) with

unit ball having r extreme points and the extreme points of the unit ball of its dual
norm are {δ1, . . . , δr0} (Note that r0 the number of extreme points of the dual unit ball
is equal to the number of facets of the primal unit ball). Therefore,

�(D(x)) = max
i=1,...,r0

〈δi , D(x)〉.
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Clearly, the linearity domains of this maximum define the sets DI (δ). Let R′ :=
{R′

j } j∈J ′ be the subdivision generated by DI (δ).
Therefore, in order to define a finer subdivision where the function F has a com-

mon linear or quadratic expression of x , we should overlap the subdivision R and R′,
namely P := {R j ∩ R′

j ′ }( j, j ′)∈J×J ′ .
The subdivision R can be generated by using the algorithm to find planar arrange-

ments induced by a finite set of lines (See, e.g. [14, Chapter 7]). Since in our case R
is generated by O(Mgkmax) lines, the overall complexity of the procedure to obtain
R is O((Mgkmax)

2).

Remark 6.2 Recall that λs(n) is the maximum length of a Davenport-Schinzel
sequence of order s on n symbols. The reader is referred to Chapter 3 in Sharir and
Agarwal [32] for the exact definitions and properties of the functions λs(n). We note
that λ4(n) = θ(n2α(n)), where α(n) is the inverse of the Ackermann function.

Within R j0 with j0 ∈ J , the upper envelope defining � has a complexity of at
most O(λ4(r0)) (see [32, Theorem 6.1]), that is, the subdivision {R′

j } j∈J ′ ∩ R j0

has O(λ4(r0)) elements. Hence, the number of elements in the subdivision P is
O((Mgkmax)

2λ4(r0)). Moreover, it can be computed in O((Mgkmax)
2λ4(r0) log(r0)),

(see [32, Theorem 6.1]).
ALGORITHM 6.1
1. INPUT: Globalizing function �, polyhedral norm γ and polyhedral sets {Ti }M

i=1.
2. Generate the subdivision P := {P j } j∈J (including two dimensional cells, one

dimensional boundaries and zero dimensional elements -extreme points-).
3. While J �= ∅,

Select j ∈ J .
(a) Identify pi j (x) ∈ ∂ d̄i (x) and δ ∈ ∂�(D(x)) for each x ∈ P j .
(b) Solve the system of linear equations

∑M
i=1 δi pi j (x) = 0, let S(x) be the set of

solutions of this system.
i. If S(x) ∩ P j �= ∅ for some x ∈ P j then M�(ϒ) = S(x) ∩ P j . STOP.

ii. Otherwise, remove j from J .
End While.

4. OUTPUT: M�(ϒ), the optimal solution set of P�(ϒ).

The above algorithm consists of two main steps. The first one is a preprocessing
step necessary to compute the subdivision P . According to the discussion above this
is doable in O((Mgkmax )

2λ4(r0) log r0). This arrangement provides information on
which facets of the units balls of γ and � are active for each Ti , i = 1, . . . , M (Recall
that a facet of a unit ball is active for a point if this point is included in the cone gener-
ated by that facet). This is sufficient to compute the elements pi j and δi . We remark that
with the above information computing the element pi j for a given i = 1, . . . , M and
j ∈ J may require the evaluation of at most g terms. Therefore, once the preprocessing
step is done, computing each pi j is doable in O(g) time. Hence, the overall complexity
of the preprocessing step is O((Mgkmax )

2λ4(r0) log r0 + (Mgkmax )
2λ4(r0)g).

The main step of the algorithm is a while loop for all the elements in J . Thus,
there are O((Mgkmax )

2λ4(r0)) iterations. In each iteration we solve a system of
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Fig. 2 Minisum problem

two linear equations in two variables to obtain the set S(x). This is done in con-
stant time. Then, we intersect S(x) with the active element, P j , of the subdivision
P . Since S(x) is either a point or a line or the whole plane, checking the intersec-
tion with P j is doable in O(log(Mgkmax + r0)) time. Hence, the overall complexity
for solving the expected distance location problem is O((Mgkmax )

2λ4(n) log r0 +
(Mgkmax )

2λ4(n)g + (Mgkmax)
2λ4(r0) log(Mgkmax + r0)).

Example 6.2 Let T1, T2, T3, T4 and T5 be the sets defined as follows:
T1 = co{(0, 11), (0, 13), (4, 13), (4, 11)}, T2 = co{(17, 7), (17, 9), (19, 9), (19, 7)},
T3 = co{(5, 2), (5, 4), (7, 4), (7, 2)}, T4 = co{(14, 0), (14, 4), (16, 4), (16, 0)}, and
T5 = co{(10, 11), (10, 13), (12, 13), (12, 11)}.

We consider γ (·) = ‖ · ‖1-norm and the following objective functions:

�1(D(x)) =
4∑

i=1

d̄i (x), �2(D(x)) =
5∑

i=1

d̄i (x)

�3(D(x)) = max
i=1,...,4

d̄i (x), �4(D(x)) =
4∑

i=3

d̄(i)(x)

where d(i)(x) = dσi (x) with σ a permutation of {1, . . . , 4}, such that, dσ1(x) ≤ · · · ≤
dσ4(x).

Case �1(·): Taking I = {1, 2, 3, 4}, δ = (1, 1, 1, 1), p1 = (1,−1), p2 =
(−1,−1), p3 = (1, 1), and p4 = (−1, 1), we can prove that (I, δ, p) is
an optimizing triplet. Moreover, we have that DI (δ) = R

2 and C I (p) is
the shaded region in Fig. 2. Thus, the solution is the rectangle of vertices
(7, 4), (14, 4), (14, 7), and (7, 7).

Case �2(·): Taking I = {1, 2, 3, 4, 5}, δ = (1, 1, 1, 1, 1), p1 = (1,−1), p2 =
(−1, 0), p3 = (1, 1), p4 = (−1, 1) and p5 = (0,−1), we can prove that
(I, δ, p) is an optimizing triplet. Moreover, we have that DI (δ) = R

2 and
C I (p) is the point x∗ = (11, 8) indicated as a dot in Fig. 3.
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Fig. 3 Minisum problem

Case �3(·): The regions R(i) for i=1,2,3,4 are the sets of points, such that, the max-
imum average distance is attained with respect to set Ti , that is,

max
i=1,2,3,4

d̄i (x) = d̄i0(x), ∀x ∈ R(i0).

Taking I = {1, 4}, δ = ( 1
2 , 0, 0, 1

2 ), p1 = (1,−1), and p4 = (−1, 1), we can
prove that (I, δ, p) is an optimizing triplet. Moreover, we have that DI (δ) is
the segment with endpoints (8, 6.5) and (11, 9.5) (the thick line in Fig. 4) and
C I (p) the rectangle defined by the two closest vertices of T1 and T4.

Case �4(·): The regions R(i, j) for i, ( �=) j ∈ {1, 2, 3, 4}, are defined such that,

4∑
i=3

d̄(i)(x) = d̄i0(x) + d̄ j0(x), ∀x ∈ R(i0, j0).

Taking I = {1, 4}, δ = (1, 0, 0, 1), p1 = (1,−1), and p4 = (−1, 1), we have
that DI (δ) is the shaded region in Fig. 5 and C I (p) is the rectangle defined by
the two closest vertices of T1 and T4.

This example shows different shapes of optimal solution sets for average distance
location problems on the ‖ · ‖1-plane with globalizing functions �i , i = 1, . . . , 4. In
the first two cases, the same globalizing function �1 gives a full dimensional solution
in Case 1 (the rectangle in Fig. 2) and a point in Case 2 (see Fig. 3). Case 3 shows a
line segment as the optimal solution for the problem with �3. Finally, Case 4 shows
that one can also obtain solutions sets that are not polytopes (see Fig. 5).

7 Discretization

In this section we present some discretization results for the problems studied in pre-
vious sections, that allow us to obtain ε-approximate solution sets of these models by
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Fig. 4 Center problem

Fig. 5 Two-centrum problem

solving location problems with points, rather than sets, as demand facilities. These
discretization results reduce the problem to a more friendly framework that permits
us to use the large battery of tools available in the literature of facility location with
respect to point facilities: exact, approximate and heuristic algorithms. Needless to
say, one can not avoid the intrinsic difficulty of the original problem since the better
the accuracy the finer the discretization required. In any case, under total polyhedrality,
these auxiliary problems are rather simple since computation of integrals is not nec-
essary. Thus, we can avoid the computation of the integration domain of the expected
distances, i.e, T ∩ (x − NBo(u)). Moreover, the subdivision generated by the family
of sets C I (p) induces actual linearity domains of the distances, e.g. distances cannot
be quadratic in any of the elements of the subdivision.

Our discretization results are obtained by solving location problems with a count-
able number of points as demand facilities defined by a set A (at times A is also
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used itself for indexing summations extended over its own elements). For the ease of
presentation, in this section we assume that γt = γ for all t ∈ T . We consider the
following auxiliary problems:

1. For Pφ(T ), we solve the Weber problem,

min
x∈X

FW,A(x) :=
∑
a∈A

waγa(x − a) (PW (A))

where W = {wa}a∈A is a set of weights.
2. For P�(ϒ), we solve

min
x∈X

�(FW1,A(x), . . . , FWM ,A(x)), (P�(A))

where FWi ,A(x) is the objective function defined above, for the set of weights
Wi = {wi,a}a∈A with i = 1, . . . , M .

Notice that PW (A) and P�(A) can be obtained as particular cases of problems
Pφ(T ) and P�(ϒ), respectively, by taking μ and μi , for i = 1, . . . , M , as discrete
measures, such that, μ(a) = wa and μi (a) = wi,a for i = 1, . . . , M . For these
discrete versions, we have a characterization of their corresponding solution sets by
Theorems 4.1 and 5.1. In the following result, we use these characterizations to obtain
ε-approximate solutions for problems Pφ(T ) and P�(ϒ).

Theorem 7.1

1. If Mφ(T ) �= ∅ and μ(T ) < +∞ then for any ε > 0 there exist countable sets
A ⊆ T, {wa ≥ 0}a∈A, and π = {pa}a∈A ⊆ Bo, such that,

∑
a∈A wa pa = 0 and

Cπ (A) := ⋂
a∈A(a + NBo(pa)) is an ε-solution set of Problem Pφ(T ).

2. If M�(ϒ) �= ∅ and μi (T ) < +∞ for all i = 1, . . . , M then for any ε > 0 there
exist a countable set A ⊆ T, Wi = {wi,a ≥ 0}a∈A for any i = 1, . . . , M, and an
optimizing triplet (I, δ, p) for Problem P�(A), such that, C I (p) ∩ DI (δ) is an
ε-solution set of Problem P�(ϒ).

Proof

(1) Since (X, γ ) is a separable Banach space, it contains a de Possel net (See [22,
Lemma 1, Section 3]). This means that for any ε > 0 there exists a countable
set A ⊂ X and a partition E = {Ea}a∈A of Borel subsets, verifying: (1) Ea ∩
Ea′ =∅, a �= a′, and

⋃
a∈A Ea = X , (2) int (Ea)�=∅, Ea⊂cl(int (Ea)), a ∈ A,

(3) supa∈A diam (Ea) < ε/(2μ(T )) (recall that diam(Ea) = supy,z∈Ea
γ (y −

z)), and (4) a ∈ Ea such that Ea ⊂ B(a, ε/(2μT )) (∀a ∈ A). It is clear that
for each Ea ∈ E there exists b ∈ Ea such that Ea ⊂ B(b, ε/(2μ(T )). Let
wa := μ(T ∩ Ea), we bound φ(x) from below, for any x ∈ X , in the following
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way:

φ(x) =
∫
T

γ (x − t)μ(dt) =
∑
a∈A

∫
T ∩Ea

γ (x − t)μ(dt)

≥
∑
a∈A

⎛
⎜⎝

∫
T ∩Ea

γ (x − a)μ(dt) − εμ(T ∩ Ea)

2μ(T )

⎞
⎟⎠

=
∑
a∈A

γ (x − a)μ(T ∩ Ea) − ε/2.

Thus, φ(x) ≥ FW,A(x)− ε/2, for any x ∈ X . Analogously, φ(x) ≤ FW,A(x)+
ε/2. Hence, |φ(x) − FW,A(x)| ≤ ε/2,∀ x ∈ X. In addition, this implies that
| infx∈X φ(x) − infx∈X FW,A(x)| ≤ ε/2. If we apply Theorem 4.1 to Prob-
lem PW (A) then there exists π = {pi }i≥0 with pa ∈ Bo, a ∈ A, satisfying∑

a∈A wa pa = 0, such that the set of optimal solutions of PW (A) is given
byCπ (A) := ⋂

a∈A(a + NBo(pa)). Therefore, we get for any y∗ ∈ Cπ (A).

∣∣∣∣ inf
x∈X

φ(x) − φ(y∗)
∣∣∣∣ ≤

∣∣∣∣ inf
x∈X

φ(x) − FW,A(y∗)
∣∣∣∣ + ∣∣FW,A(y∗) − φ(y∗)

∣∣ ≤ ε

(2) By the continuity of � we have that for all ε > 0 there exist a δ > 0, such
that, |�(d̄1(x), . . . , d̄M (x)) − �(FW1,A(x), . . . , FWM ,A(x))| < ε

2 ∀x ∈ X ,
when |d̄i (x) − FWi ,A(x)| ≤ δ,∀i = 1, . . . , M . Therefore, following a sim-
ilar argument as for statement (1), there exist a countable set A and a parti-
tion E = {Ea}a∈A of Borel subsets, verifying: (1) Ea ∩ Ea′ = ∅, a �= a′,
and

⋃
a∈A Ea = X ; (2) int (Ea) �= ∅, Ea ⊂ cl(int (Ea)), a ∈ A; and, (3)

supa∈A diam (Ea) < δ/(maxi=1,...,M μi (T )); such that, for wi,a := μi (T ∩
Ea), a ∈ A, i = 1, . . . , M ; |d̄i (x)− FWi ,A(x)| ≤ δ,∀i = 1, . . . , M and x ∈ X.

In addition, by continuity of �, this implies that

∣∣∣∣ inf
x∈X

�(d̄1(x), . . . , d̄M (x)) − inf
x∈X

�(FW1,A(x), . . . , FWM ,A(x))

∣∣∣∣ ≤ ε/2.

Applying Theorem 5.1 to Problem P�(A), we have that there exists an
optimizing triplet (I, δ, p) such that M�(A) = DI (δ) ∩ C I (p). There-
fore, for any y∗ ∈ DI (δ) ∩ C I (p), we get | inf x∈X �(d̄1(x), . . . , d̄M (x)) −
�(d̄1(y∗), . . . , d̄M (y∗))|≤| infx∈X �(d̄1(x), . . . , d̄M (x))−�(FW1,A(y∗), . . . ,
FWM ,A(y∗))| + |�(FW1,A(y∗), . . . , FWM ,A(y∗)) − �(d̄1(y∗), . . . , d̄M (y∗))| ≤
ε, and the result follows. ��

It is worth noting that if T were a compact set, the cardinality of A would be finite.
Therefore, the number of demand points defining the Weber problem PW (A) would
be finite as well.
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8 Concluding remarks

Most of the results in this paper extend to more general situations with weaker hypoth-
eses as for instances removing separability or considering σ -fields different from the
Borel one. However, to improve readability we have restricted ourselves to the com-
mon framework of separable Banach spaces. It is also possible to extend the results
in this paper to location problems where the solution x is restricted to belong to a
convex set. In this case all the characterizations also depend on the normal cone to
the constraint set. Finally, the approach in this paper also applies to the location of a
measurable set, say S (whose shape is fixed), rather than to a single point. Indeed, the
problem:

inf
x∈X

F(x) :=
∫
T

∫
S

γ (x + s − t)μ(dt)ν(ds),

can be interpreted as the minimization of the average distance of a shape S, with
the associated measure ν, with respect to T . By considering the change of variable
b = s − t , and denoting by η the measure defined on the set B = S − T (see [9]), we
get inf x∈X F(x) = infx∈X

∫
B γ (x − b)η(db), which falls into the class of problems

considered in the paper.
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